区块链中的数学 – Pedersen承诺

这篇文章主要介绍了区块链中的数学 – Pedersen承诺 ,文中通过代码以及文档配合进行讲解,很详细,它对在座的每个人的研究和工作具有很经典的参考价值。 如果需要,让我们与区块链资料网一起学习。

https://www.interchains.cc/23480.html

区块链中的数学 – Pedersen承诺是很好的区块链资料,他说明了区块链当中的经典原理,可以给我们提供资料,区块链中的数学 – Pedersen承诺学习起来其实是很简单的,

不多的几个较为抽象的概念也很容易理解,之所以很多人感觉区块链中的数学 – Pedersen承诺比较复杂,一方面是因为大多数的文档没有做到由浅入深地讲解,概念上没有注意先后顺序,给读者的理解带来困难

区块链blockchain中的数学 – Pedersen承诺

Pedersen承诺产生方式,有些类似加密,签名之类的算法。但是,作为密码学承诺重在“承诺”,并不提供解密算法,即如果只有r,无法有效地计算出隐私数据v。

写在前面

上一篇介绍了密码学承诺中的hash承,也是最简单的承诺方式,本文继续讲用途更广泛的Pedersen承诺!

Pedersen Commitment

Pederson承诺是密码学中承诺的一种,1992年被Torben Pryds Pedersen在“Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing”一文中提出。 目前Pedersen Commitment主要搭配椭圆曲线密码学使用(当然也可以结合指数运算)。具有基于离散对数困难问题的强绑定性和同态加法特性的密文形式

以结合椭圆曲线为例来说明,Pedersen承诺核心公式表达:

C = r G + v H

上述公式中,C为生成的承诺值,G、H为特定椭圆曲线上的生成点,r代表着盲因子(Blinding factor),v则代表着原始信息。由于G、H为特定椭圆曲线上的生成点,所以r G、v H可以看作是相应曲线上的公钥(r、v同理也可以视为私钥)。

承诺生成和揭露过程如图:

<a href=区块链blockchain中的数学 – Pedersen承诺” />

由于引入了随机盲因子r,对于同一个v会就能产生不同的承诺c,即便敏感隐私数据v不变,最终的承诺c也会随着r的变化而变化,因此提供了信息论安全的隐匿性。这一点类似ECDSA,Schnorr签名采用的手法。

Pedersen承诺加法同态

Pedersen承诺还具有加法同态特性。所谓加法同态,即两数相加和的密文等于两数的密文相加!假设明文a, b ,加密函数e,满足: c = a + b e(a) + e (b) = e(c)

Pedersen承诺结合椭圆曲线天然地具备了加法同态的特性,这是椭圆曲线点运算的性质决定的。

假设有两个要承诺的信息$v_1,v_2$, 随机数$r_1,r_2$,生成对应的两个承诺: $C(v_1)=r_1G+v_1H$ $C(v_2)=r_2G+v_2H$

则$v_1+v_2$承诺结果: $C(v_1+v_2) =(r_1+r_2)G+(v_1+v_2)H$ $(r_1G+v_1H)+(r_2G+v_2H)$ $C(v_1)+C(v_2)$

Pedersen承诺还可以扩展构造$v_1*v_2$等复杂的情况,来证明新产生的承诺满足与原始承诺之间存在指定的约束关系。

小结

Pedersen承诺产生方式,有些类似加密,签名之类的算法。但是,作为密码学承诺重在“承诺”,并不提供解密算法,即如果只有r,无法有效地计算出隐私数据v。

目前Pedersen承诺在区块链blockchain中的应用主要在隐私币中,如zcash,MimbleWimble,Monero等。

其他业务系统中,适用于数据源向第三方证明承诺中的秘密数据满足一定的约束关系,其实这也是所有密码学承诺的主要的应用场景!

既然说到了Pederson承诺,Pederson还有一个可验证的密钥分享方案,下一节继续说说吧!

原文链接:https://mp.weixin.qq.com/s/BVXgJE-rL8_r8n1xB5J-JA

欢迎关注公众号:blocksight

相关阅读

区块链blockchain中的数学 – 哈希承诺 密码学承诺–hash承诺

区块链blockchain中的数学 – 不经意传输 不经意传输协议

区块链blockchain中的数学- BLS 基石(双线性函数)和配对 双线性映射(配对)

区块链blockchain中的数学 – BLS门限签名 BLS m of n门限签名

区块链blockchain中的数学 – BLS密钥聚合 BLS密钥聚合

区块链blockchain中的数学 – BLS数字签名 BLS签名及验证

区块链blockchain中的数学 – 参与者 < 门限值t的密钥更新Amir Herzberg方案 Amir Herzberg改进方案

区块链blockchain中的数学 – Feldman的可验证的密钥分享 Feldman可验证密钥分享方案

区块链blockchain中的数学 – Ed25519签名 Ed25519签名

区块链blockchain中的数学-ElGamal算法 ElGamal算法签名及验证&实例演练

区块链blockchain中的数学-VRF基于ECC公钥体制的证明验证过程 基于椭圆曲线的VRF证明验证过程

Schorr签名与椭圆曲线 Schorr签名与椭圆曲线

区块链blockchain中的数学-Uniwap自动化做市商核心算法解析 Uniwap核心算法解析(中)

部分转自网络,侵权联系删除www.interchains.cchttps://www.interchains.cc/23480.html

区块链毕设网(www.interchains.cc)全网最靠谱的原创区块链毕设代做网站 部分资料来自网络,侵权联系删除! 最全最大的区块链源码站 ! QQ3039046426
区块链知识分享网, 以太坊dapp资源网, 区块链教程, fabric教程下载, 区块链书籍下载, 区块链资料下载, 区块链视频教程下载, 区块链基础教程, 区块链入门教程, 区块链资源 » 区块链中的数学 – Pedersen承诺

提供最优质的资源集合

立即查看 了解详情